
The genetic material: deoxyribonucleic acid (DNA). A simple animation of the classic molecular model. By USDA ([1]) [Public domain], via Wikimedia Commons
As a scientist interested in DNA, chromosomes, and other cellular components, I have relied heavily on the talents of both scientific illustrators and animators to help me visualize what I was learning about and working with in the lab. I am grateful for the people who can interpret complex scientific data and create dynamic images that help us all really “get it.” As an educator, I also regularly share diagrams and animations with my students to help them learn.

The Golgi apparatus, rendered in 3-D. Computer models and animations help bring microscopic structures to life. By ZEISS Microscopy from Germany (Algal Golgi body, 3D reconstruction) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)%5D, via Wikimedia Commons
But the real star of the video is a wonderful type of molecule called a motor protein. Motor proteins “walk” along protein fibers called microtubules that can serve as “tracks” through a cell. The motor proteins carry cargo in spheres of membrane called vesicles, many of which bud off from the Golgi apparatus. Look for the motor protein in the link above, walking along carrying a blue sphere (vesicle). I describe motor proteins in class and even try to act them out myself, but there’s something about seeing this little protein brought to life in a video that captivates my students and helps them really remember it.
Recently, a GIF animation has resurfaced around the internet showing a charming motor protein carrying its cargo. Unfortunately, it was captioned incorrectly (and not attributed properly) on viral social media posts, and it got me thinking more about the reach of science videos. No, it’s not myosin carrying an endorphin—or happiness at a cellular level. It’s a motor protein, and it’s amazing just for being itself! The artist, John Liebler, created the original “Inner Life of the Cell” animation and the newer GIF and has more descriptions and animations of the kinesin motor protein on his website: Art of the Cell. I also discovered another really nice blog post on the kinesin confusion: check out easternblot.net for more on this mixup of the most internet-famous of motor proteins. Even Snopes has weighed in on the motor protein’s misidentification. For a little snippet of science animation, the humble motor protein sure gets around!

Not an animation! This is a steroscopic view of the turbine ATP synthase. Try crossing your eyes gently to see a 3-D view. By Del45 [Public domain], via Wikimedia Commons
A year ago, in the early weeks of my blog, I wrote about a recent finding in DNA research about how DNA is organized in a cell’s nucleus (see post “Rainbow DNA”). Scientists have continued making breakthroughs in understanding how different regions of a cell’s genetic information stay organized even when they aren’t coiled into the compact chromosomes we can observe with our own eyes under a microscope. One of the most compelling aspects of the news of this discovery was the colorful diagrams and the animation of the nucleus that was created and shared rather widely with the research findings. I continue to see models and animations of DNA organization popping up on my social media sites, as scientific models on this topic continue to be refined. (See a recent article in Quanta magazine for a summary and links to some research about new insights into how DNA is stored and moved by molecular motors through rings as part of its organization in the nucleus of the cell.) While these types of animations serve scientists themselves rather than a broader audience, they, too, move our understanding forward in ways that a description on paper just can’t quite match.
Scientists are taking advantage of our increasingly vast computing power to mine the depths of genomes and the explore the intricacies of cells like never before. We now have the ability to amass and analyze huge amounts of information to help us better understand living things. These same technological advances help us create ever more realistic print images, computer models, and animations of biological structures and processes. And so, scientific animation and illustration continues to evolve as an interdisciplinary career path for creative people who enjoy the challenge of bringing science to life on a digital screen. An article in the scientific journal Nature from 2011 provides an interesting perspective on these types of careers at the intersection of art and science. The right blend of creative spark and scientific know-how can even land you the title of “genius.” Scientific animator Drew Berry was awarded a prestigious MacArthur Foundation grant in 2010 in recognition of his work in scientific animation. Check out his ideas in this interview with the MacArthur Foundation and his own TEDx talk on scientific animation to learn more about his fascinating work.
Now, several years later, it’s easy for me to just hop online and find an animation, or to download the many videos provided by educational publishers for me and my students, I truly appreciate the years of work of the scientists who put together a careful description of so many tiny structures and the artists who render them into something we can understand and admire. The combination of scientific insight with artistic vision creates a synergy of ideas that helps all of us better perceive what we cannot easily see. And as we continue to learn more about so many complex areas of science—from tiny molecules to distant galaxies—we all benefit from animations that spark our imaginations and help us stay curious about the world around us.